

Technologies under supercritical conditions

Drawbacks of the traditional technology:

- Large number of process operations (minimum 3 stages)
- Relatively low target product yield
- Need for separation and disposal of by-products (acid waste etc.)
- Process time (over 24 hours)

Advantages of a new technology:

- One stage
- No catalysts
- Environmental friendliness
- Simple hardware
- Significant production cost reduction

Production of carboxylic acid compound ethers

Dioctyl terephthalate (DOTP)

Component name	% wt.
Octylisophthalate	0,34
Dioctylterephthalate (DOTP)	91,10
Water	8,56
Total	100

Dioctyl sebate (DOS)

Component name	% wt.
Dioctyl sebacate (DOS)	85,28
Octylsebacate	7,11
Water	7,61
Total	100

Dioctyl adipate ester (DOA)

Component name	% wt.
Dioctyl adipate (DOA)	86,11
Octyladipate	7,61
Water	6,28
Total	100

Acetic ether (ethyl acetate)

Component name	% wt.
Ethanol	3,31
Acetic acid	9,89
Ethyl acetate	74,20
Water	12,58
Total	100

Propyl acetic ester (propyl acetate)

Component name	% wt.
Propanol-1	2,49
Acetic acid	2,51
Propyl acetate	80,75
Water	14,25
Total	100

Butyl acetic ester (butyl acetate)

Component name	% wt.
Butanol-1	3,31
Acetic acid	2,68
Butyl acetate	81,37
Water	12,62
Total	100

Isoprene production technology under supercritical conditions

The isoprene production technology is based on Diels-Alder reaction reaction under supercritical conditions:

Piperylene/ethylene = 1/10; Tcr, Pcr; isoprene yield per passed piperylene 51 % wt.

Fatty acid ethyl ester (biodiesel) production technologies

The biodiesel production technology is based on reesterification of fat acids triglycerides (FAT - sunflower oil) by ethyl alcohol under supercritical conditions (catalyst-free process)

Component name, % wt.	Contents, % wt.
Mole ratio, FAT: alcohol	1:6
Fat acid ethyl ester (FAEE)	43.78
Glycerine	13.71
Fat acid triglyceride (FAT)	7.82
Ethanol	34.29
Total	100

Advantages

- Biofuel has excellent lubricating properties
- Fuel spills are quickly decomposed by micro-organisms
- Biodiesel production simplicity, low price and speed
- No strong smell and a low toxicity level

Heterogeneous catalyst regeneration technology

<u>The main drawbacks of the traditional oxidation regeneration</u> – high temperature and oxidizing medium – have a negative impact on a catalyst structure reducing a catalyst operating life

The process of regeneration by supercritical fluids enables to extract coke deposits from catalyst pores without changing its morphological and textural characteristics

Advantages of the technology

- no effluents, emissions, solid waste
- low power consumption
- simple process equipment
- possibility for regeneration of all heterogeneous oil refining and petrochemistry catalysts
- catalyst life cycle increase

Example

Medium temperature isomerization catalyst				
Traditional regeneration New technology				
Physical and chemical catalyst properties (morphology and texture)	irreversible changes, catalyst structure integrity violation, "ageing"	does not change		
Conversion, % wt.	68.7	69.89		
Selectivity, % wt.	93.9	94.14		
Yield % wt.	64.7	65.46		
Catalyst operating life	8 years	12-15 years		

Isobutane olefin solid acid alkylation technology

Isobutane olefin alkylation on zeolitic catalysts with in situ regeneration

	Technology with sulphuric acid	New technology	
Capital investments	100 %	50%	
Yield	(g/y of olefins)		
Alkylate yield	1.78	1.92	
Isobutane consumption	1.17	1.23	
RON (research octane number)	95	96-97	
Auxiliary resources/ materials (per alkylate barrel)			
Vapour (kg)	90.72	107.5	
Electric power (kW-)	10.5	3.5	
Cooling water (thous. m³)	8.33	0.87	
Catalyst (kg)	9.07	0.05	
NaOH (100%, kg)	0.05	-	

- The continuous mode of the alkylation process on a heterogeneous catalyst has been developed
- It combines sequential alternation of traditional and supercritical conditions with the option of "in situ" regeneration
- It enables to increase significantly cycle length and efficiency of zeolitic catalyst during the isobutane fraction alkylation process
- Experimental-pilot runs verifying catalyst stable operation, over 1000 hours, were performed

Development of new petrochemistry and oil refining technologies

Gasoline fraction aromatization technology

Hydrocarbons	Feedstock, % wt.	Products, % wt.
C ₁ -C ₄	-	29.67
Gasoline fraction	91.0	
(nk-180 °C)	91.0	63.31
Kerosene fr. (180-	9.0	
kk °C)	9.0	7.02
Total	100.0	100.0

Pentane fraction medium temperature isomerization technology

Hydrocarbons	Feedstock,	Products,
Trydrocaroons	% wt.	% wt.
C_3 - C_4	-	1.13
Hydrogen	6.90	6.42
Pentane	100	33.31
Isopentane	-	66.04
Total	106.90	106.90

Development of new petrochemistry and oil refining technologies

The gas condensate residual fraction hydrocatalytic process refining technology

Hydrocarbons	Feedstock, % wt.	Per pass,% wt.	With residue recirculation, % wt.
C_1 - C_4	-	6.24	7.48
Gasoline fraction (nk-160°C)	4.50	11.50	12.63
Kerosene fr. (160-240°C)	7.90	17.00	20.34
Diesel fr. (240-350°C)	30.30	46.86	52.43
Residue 350 °C+	57.30	18.40	7.12
Total	100.00	100.00	100.00

Domestic catalyst based on SAPO-34 for a logistics process

T, °C	Ethylene yield, % wt.
380	16.52
400	14.41
420	13.92

Propane-propylene (PPF) and butane-butylene fraction (BBF) oligomerization technology and catalysts

Composition of oligomerizate, parameters and indicators of PPF and BBF oligomerization process on a superacid catalyst based on pillared montmorillonite

Composition of oligomerizate:	PPF	BBF		
C_6	15.1	2.4		
C ₇	2.8	3.1		
C ₈	3.3	40.8		
C ₉	47.2	7.5		
C ₁₀	2.1	11.4		
C ₁₁	1.7	2.3		
C ₁₂₊	27.8	32.5		
Total	100	100		
Parameters and indicators of process:				
Temperature, °C	150	150		
Pressure, MPa	3.0	4.0		
Feedstock delivery speed, h-1	1	1		
Olefin conversion degree α, %	68.1	70.8		

Additives to motor oils and fuels

№№	Additive name	Additive characteristics		
1	ALKENYLSUCCINAMIDE	Base number - 30 Nitrogen contents – 2.1 Kinematic viscosity at $100 ^{\circ}\text{C} - 90 \text{mm}^2/\text{c}$ Active substance – $40.0 ^{\circ}\text{C}$ T _{flash} = $196 ^{\circ}\text{C}$ Detergent properties, score – $0.5 ^{\circ}$ Corrosive properties, score – $5.0 ^{\circ}$ Lubricating capacity: adjusted wear scar diameter at $60 ^{\circ}\text{C}$, $398 ^{\circ}\text{mcm}$ ($0.1\% ^{\circ}\text{wt.}$)		
2	ALKYL PHENOL	Reduction of I-40 oil pour point during the addition of 1% additive Kinematic viscosity at $100~^{\circ}\text{C} - 8.5~\text{mm}^2/\text{c}$ Acid number -0.3 I-40 oil corrosiveness with 1% additive on lead plates $-10~\text{g/m}^3$		

Synthetic oils based on dicarboxylic acid esters, compound complex esters and alkyl naphthalenes

№ №	Synthetic oil type	Synthetic oil characteristics		
1 Alkyl naphtalene		$T_{pour.} = -45 ^{\circ}\text{C}$ Density at $20^{\circ}\text{C} = 0.978 \text{g/cm}^3$ Kinematic viscosity at $100^{\circ}\text{C} - 4.38 \text{mm}^2\text{/c}$ Kinematic viscosity at $40^{\circ}\text{C} - 26.10 \text{mm}^2\text{/c}$ Viscosity index -58		
2	Dicarboxylic acid esters	$T_{pour.} = -64 ^{\circ}\text{C}$ Density at $20^{\circ}\text{C} = 0.964 \text{g/cm}^3$ Kinematic viscosity at $100^{\circ}\text{C} - 3.2 \text{mm}^2\text{/s}$ Kinematic viscosity at $40^{\circ}\text{C} - 18.5 \text{mm}^2\text{/c}$ Viscosity index -67		
Complex alkenylsuccinic anhydride esters		$T_{pour.} = -46 ^{\circ}\text{C}$ Density at $20^{\circ}\text{C} = 0.978 \text{g/cm}^3$ Kinematic viscosity at $100^{\circ}\text{C} - 12.39 \text{mm}^2\text{/s}$ Kinematic viscosity at $40^{\circ}\text{C} - 56.23 \text{mm}^2\text{/s}$ Viscosity index -26		

$$\begin{array}{c} H_{2}C\\ H_{2}C\\ H_{3}C\\ \end{array}$$

Results of the comparative analysis of mixture properties using essential and polyalphaolefin oils (Nexbase-2004)

$$CH_{3}-(CH_{2})_{5}-O-C-C-CH_{2}-CH_{2}-CH_{2}-C-O-(CH_{2})_{6}-CH_{3}$$

№		Sample №1	Sample №2	Sample №3	Sample №4	Sample №5
1	I-20A with thickener Infineum SV-260	up to 100%				
2	Nexbase-2004, % wt.	-	10	-	-	-
3	EO, % wt.	-	-	8	10	15
4	Kinematic viscosity at 100 °C	14.67	14.28	14.27	14.32	14.12
5	Kinematic viscosity at 40 °C	105.56	97.61	100.34	102.27	96.42
6	Viscosity index	128	131	133	130	132
7	CCS at -25°C (maximum 7000)	10416	7352	7147	6973	6905